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ABSTRACT. A general framework is proposed for validating numerical models for nonlinear, transient
dynamics. Previous work has focused on nonlinear vibration and several difficulties of formulating and solving
inverse problems for nonlinear dynamics have been identified. Among them, we cite the necessity to satisfy
continuity of the response when several finite element optimizations are successively carried out and the need
to propagate variability throughout the optimization of the model’s parameters. After a brief discussion of the
results obtained when conventional model updating and optimal control strategies are implemented, it is shown
that these difficulties can be circumvented by replacing the resolution of an inverse problem with multiple
forward, stochastic problems. The issue of defining an adequate metrics for data correlation is also addressed.
Our approach is illustrated using data from a nonlinear vibration testbed and an impact test experiment both
conducted at Los Alamos National Laboratory in support of the advanced strategic computing initiative and our
code validation and verification program.

RÉSUMÉ. Une formulation générale est proposée afin de valider les modèles numériques développés pour
les besoins de la dynamique transitoire et nonlinéaire. Le travail réalisé antérieurement s’est concentré sur les
applications en vibrations nonlinéaires et plusieurs difficultés ont été identifiées quant à la formulation et la
résolution de problèmes inverses. Parmi ces difficultés, nous citons la nécessité de satisfaire la continuité des
réponses temporelles lorsque plusieurs optimisations successives sont réalisées ainsi que le besoin de propager
des sources de variabilité durant l’optimisation des paramètres du modèle. Après une brève discussion des
résultats obtenus lorsque les techniques conventionelles de recalage de modèles et de commande optimale sont
utilisées,  il est montré comment ces difficultés peuvent être surmontées en remplaçant la résolution d’un
problème inverse par plusieurs problèmes directs stochastiques. Le choix d’une métrique adéquate pour la
corrélation de données nonlinéaires est abordé brièvement. Nos conclusions sont illustrées à l’aide de données
expérimentales issues d’un système vibratoire nonlinéaire et d’un système soumis à impact, tous deux
développés et testés dans le cadre d’un programme initié à Los Alamos National Laboratory pour les validation
et vérification des modèles numériques et phénomènes physiques complexes.

KEY WORDS: Nonlinear dynamics, transient data analysis, shock response, inverse problem, model
updating, probabilistic modeling, multivariate statistical analysis.
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Nomenclature

The “Standard Notation for Modal Testing & Analysis” is used throughout this paper, see Reference
[LIE 92]. Symbols not commonly used in the modal testing and structural dynamics communities are
defined in the text.

1. Introduction

Inverse problem solving is at the core of engineering practices as such work generally involves
designing a system to target a given performance or to satisfy operating constraints. Increasingly,
designers are faced with shorter design cycles while their testing capabilities are reduced and the physics
they must understand becomes more sophisticated. The consequence is the need for larger-size computer
models, coupled-field calculations and more accurate representations of the physics. To improve the
predictive quality of numerical models and enhance the capability to extrapolate the response of a system,
it is often necessary to solve inverse problems where simulations are compared to field measurements
[HEM 99a]. In addition, it has been recognized that non-deterministic approaches must be employed to
alleviate our lack of test data and incomplete understanding of complex mechanics [HEM 99b].

In this work, a general formulation of inverse problems for correlating transient dynamics to
responses obtained from several nonlinear finite element models is proposed. An application to the field
of structural dynamics is described where several software packages are interfaced to enable fast
probability integration using nonlinear finite element analysis [CRU 89]. Hence, probabilistic response
surfaces and sensitivity data are generated for optimizing the structural form and design parameters of a
family of models with the ultimate goal of identifying the best possible representation of the system.

The current application features the impact of a steel cylinder that compresses a layer of elastomeric
material otherwise difficult to characterize with conventional testing procedures [BEA 99]. By correlating
the transient acceleration response to field measurements, this behavior is characterized and high-fidelity,
physics-based modeling of the material is optimized. In the effort to reproduce the test data, several
models are developed by varying, among other things, the constitutive law and the type of modeling.
Therefore, the optimization variables consist of the usual design variables augmented with structural form
parameters such as kinematic assumptions and geometry description (2D or 3D). First, probabilistic
sensitivity analysis is employed to identify the most important optimization parameters. Then, several
metrics for comparing test and analysis data are evaluated. Finally, optimization is carried out to validate
each one of the candidate models

This paper is organized as follows: Assumptions and choices made throughout this work are justified
in Section 2 where the main findings are also summarized. It also discusses previous research and
summarizes conclusions reached after applying some of the available test-analysis correlation techniques
to nonlinear vibrating systems. Our past investigation of nonlinear vibrations features a 8-degree of
freedom, mass-spring system. Nonlinearity is introduced by the joint means of friction and a
contact/impact mechanism. In addition to showing the limitations posed by conventional, modal-based
techniques, time-domain methods are tested for their ability to identify damage in one of the linear
springs. We have also contributed to demonstrate that optimal control strategies must be used for
addressing the main drawback of time-domain formulations, that is, their inability to enforce continuous
solution fields. Unfortunately, this additional constraint introduces a two-point boundary value problem,
the resolution of which at each step of the optimization is not (yet) compatible with the analysis of
large-size, structural models. The reader is referred to Reference [HEM 99c] for more details about this
investigation of nonlinear vibrating systems. A short description of the impact testbed used for
illustrating our model validation effort follows in Section 3. Section 4 proposes a general framework for
the validation of nonlinear models using transient test data. The framework is based on the probabilistic
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analysis of forward systems instead of the resolution of inverse problems. The main motivations for this
approach are to address some of the pitfalls identified previously and to offer a formulation that best
exploits our computational resources. Finally, an illustration is provided in Section 5 using the test data.

2. Motivations and Main Findings

We wish to convince the reader that, for a wide variety of test-analysis applications, techniques based
on linear dynamics and modal superposition are likely to fail. Hence, it is critical to validate numerical
models by correlating transient test data rather than steady-state, modal data. However, formulating
correctly the inverse problem in this case requires to solve multiple two-point boundary value problems,
as explained in Reference [DIP 98]. Our preliminary investigation of these techniques indicates that their
computational requirements prohibit their application to the types of problems we are interested in.

Instead, inverse problem solving is replaced by a methodology where response surfaces are generated
from the resolution of a large number of forward analyses. This best utilizes our capabilities for modeling
nonlinear systems using general purpose finite element packages [ABA 98] and our computational
resources where parallel processing enables the simultaneous analysis of several thousand nonlinear
problems very efficiently. Two other important contributions to this work are 1) the ability to derive
high accuracy, physics-based material models and 2) fast probability integration for large-scale structural
analysis [NES 96]. The first one is not discussed in this paper but it is briefly mentioned here because
physics-based models of material behavior are generally obtained from a microscopic description of the
material. As such, they depend on parameters that can not be measured with great accuracy and that are
best characterized by probabilistic distributions. This explains why fast probability integration techniques
are critical to our work and why optimization algorithms are required, not only to adjust parameters of the
models, but also to assess the quality of models in a probabilistic sense. This procedure is summarized in
Figure 1 where arrows symbolize the flow of information during the successive steps of testing,
modeling, analysis and validation.

Figure 1. Flow chart describing the different steps of testing, modeling, analysis and validation.
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test-analysis correlation and model validation. In doing so however, we believe that this work contributes
to open research issues such as assessing the efficiency of current metrics for test-analysis correlation,
formulating inverse problems for nonlinear dynamics and developing a new testing procedure for
characterizing nonlinear materials in the high deformation and high rate ranges. An important finding that
we would like to emphasize and that will be addressed in future research is the need to develop new test-
analysis correlation metrics (what is sometimes referred to as “feature extraction”) for analyzing
nonlinear, transient data. Another critical issue is the notion of model validation that can be, we believe,
recast as a general pattern recognition problem [BIS 98].

2.1 Background

The first part of this research effort is documented in References [HEM 99a], [HEM 99b] and has
consisted in attempting to formulate criteria for measuring the correlation between test data and finite
element results for nonlinear vibrations. Since we have always constrained ourselves to 1) handle any
type and source of nonlinearity and 2) enable both parametric and non-parametric updating to be carried
out simultaneously, very few techniques have been found in the published literature that could meet our
expectations. Typical examples of nonlinearities we are interested in include material nonlinearity,
friction, impact and contact at the interface between two components. These are typical of nonlinearity
sources dealt with in the automotive and aerospace industries. As an illustration of this lack of techniques
relevant to the nonlinear word, the reader is invited to review from References [IMR 91], [MOT 93] the
state-of-the-art in model updating technology. Among the earliest and most promising work in test-
analysis correlation for nonlinear dynamics, we cite the work by Hasselman, Anderson and Wenshui
[HAS 98] and the work by Dippery and Smith [DIP 98].

2.2. Experimental Testbed for Nonlinear Vibrations

Our testbed for the validation of nonlinear vibration modeling is the LANL 8-DOF (which stands for
Los Alamos National Laboratory eight degrees of freedom) system illustrated in Figure 2. It consists of
eight masses connected by linear springs. The masses are free to slide along a center rod that provides
support for the whole system. Modal tests were performed on the nominal system and on a damaged
version where the stiffness of various springs is reduced by 14%. A contact mechanism was also added
between two masses to induce a source of contact/impact, see Figure 2. Time-domain acceleration data are
measured at each one of the eight masses and modal parameters are identified using a classical frequency-
domain curve fitting algorithm.

Figure 2. LANL 8-DOF Testbed. Overall setup (left) and detail of the impact mechanism (right).
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2.3. Application of Modal-based Updating Techniques

The test we are interested in consists of identifying the damaged spring using a linear model that does
not account for the friction nor the source of contact/impact. This is achieved by minimizing the
“distance” between test data and predictions of the numerical model, whether this distance is evaluated in
the time or frequency domain. The optimization problem can be formulated as the minimization of the
cost function shown in equation [1] where the first contribution represents the metrics used for test-
analysis correlation and the second contribution serves the purpose of regularization
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Constraints are added to the formulation to eliminate any local minimum that would not be acceptable
from a physical standpoint. In this test, the parameters of interest are the seven spring stiffnesses. The
weighting matrices in equation [1] are generally kept constant and diagonal for computational efficiency.
They can also be defined as general covariance matrices which formulates a Bayesian correction procedure,
as shown in Reference [HEM 99b]. Obviously, many choices for the metric are available, the simplest of
all being the difference between test and analysis modal parameters, also known in the model updating
community as the output error residual, see Reference [PIR 91].

The results summarized here involve the definition of the output residue [PIR 91] and two input
residues, namely, the force and hybrid modal residues defined in References [HEM 95] and [CHO 98]. We
emphasize that our purpose is not to compare various figures of merit for their efficiency to identify
sources of modeling error but rather to illustrate the danger of modal-based updating when the system is
characterized by a source of nonlinearity not accounted for by the numerical model. Here, for example,
friction is not represented. Although the linear model provides a good agreement with test data before and
after parametric correction, the update fails to yield a positive identification of damage introduced at
spring number five. Worse, false positives (that is, stiffness reductions predicted at locations where no
damage was originally introduced) are obtained. We have checked that the optimization solvers used are
not responsible for these poor results. In this study, the order-0, Simplex algorithm, the order-1,
conjugate gradient algorithm and the order-2, BFGS and Levenberg-Marquardt methods are implemented
and they all fail to identify the damage scenario when associated to modal-based metrics. These classical
optimization solvers are described in many publications and manuscripts among which we cite Reference
[JAC 77]. This simply demonstrates the limitations of modal data to characterize nonlinear dynamics,
even in a case as simple as the LANL 8-DOF testbed.

2.4. Time-domain Correlation Metrics

The next step is to implement two correlation metrics based on time series and described in Reference
[HEM 99a]. The first one correlates the measured and simulated signals directly (RMS error) while the
second one correlates the subspaces to which these signals belong. This is achieved by making the
numerical model match the singular values and vectors obtained by decomposition of the test data matrix,
a procedure generally referred to as principal component decomposition (PCD). Reference [HAS 98] offers
a complete description of this procedure. The main result of applying this procedure to the LANL 8-DOF
testbed and to other, numerically simulated data sets is that time-domain metrics are successful at
identifying parametric and/or non-parametric errors even when the model optimized is purely linear.
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For example, we can identify the nonlinear, internal force by minimizing the RMS or PCD error
based on acceleration measurements at three locations only. Here, the contact mechanism is enabled,
therefore, introducing a source of contact/impact during the vibrations. The random, input excitations at
the driving point (location 1) and the eight accelerations are measured at 4,096 samples over a time period
of 8 seconds. Data are collected for various force levels to identify the degree of nonlinearity. Although
all degrees of freedom are measured, we assume that data are available at locations 1, 5 and 6 only. Since
the correlation involves three measurements only, model reduction is implemented to condense the finite
element matrices and force vectors. The particular technique chosen preserves exactly the lowest
frequencies and mode shapes of the linear model [BUR 94]. As mentioned previously, our modeling of
this system is perfectly linear except for the addition of an internal force vector. Arbitrary internal forces
are applied at each one of the eight masses of the system and test-analysis correlation is used for
estimating these force levels at prescribed time samples. The unknowns are therefore these eight force
components. Correlation is based on the first 90 acceleration measurements that span the time window
[0;0.168] sec. For the numerical simulation, finite element matrices and force vectors are reduced to the
size of the test model (locations 1, 5 and 6 only) and the response of the condensed model is integrated in
time using 10 sampling points between any two measurements. As the response is integrated in time,
the internal force vector is optimized. Figure 3 shows the reconstruction of internal force as
optimizations are performed for each time interval containing three consecutive measurements. In other
words, 30 optimizations are performed, one every 0.0056 sec. No clear interpretation of this forcing
function can be made. Notice however that the internal force at location 1 is approximately equal to zero
which seems consistent with the fact that degree of freedom 1 is the driving point where the random
excitation is applied.
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Figure 3. Time-history of the internal force obtained via test-analysis correlation.

Figure 4 illustrates the correlation before and after model updating when the cost function is defined
by the RMS error. Similar results are obtained using the PCD metric. Adding to the numerical
simulation the nonlinear force identified via test-analysis correlation (see Figure 3) provides a clear
improvement of the model’s predictive quality. This simple example illustrates how unmodeled dynamics
can be identified in the context of incomplete measurement sets and nonlinear responses. The next step is
to show that large numerical models can be validated using similar test-analysis correlation metrics,
explicit, time-domain solvers and probability integration. The impact testbed developed for this purpose
is described in Section 3 below.
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Figure 4. Acceleration time history before (left) and after (right) optimizing the components of a
nonlinear, internal force vector for the LANL 8-DOF testbed.

One major difficulty of time-domain model validation is the reconstruction of continuous solution
fields. This issue is fundamental because, if the inverse problem is not formulated correctly, the
optimized numerical models yield discontinuous acceleration, velocity and displacement fields which
contradicts the laws of mechanics for the class of problems investigated here. This issue is briefly
addressed in Section 2.5 below.

2.5.  Discontinuity of the Solution Fields

When time-domain data are used for validating a numerical model, it may be advantageous to divide
the available time record into several windows, each of smaller duration. The reason is that the
computational effort of calculating a cost function in the time domain is directly proportional to the
number of increments required to integrate the equation of motion. The shorter the time window, the
faster the optimization. However, the strategy of implementing successive optimizations produces several
optimized models, one for each time window considered. This is necessary not only for computational
purposes but also because some of the parameters being optimized may vary in time and following such
evolution as it occurs may be critical. However, nothing in the formulation of the inverse problem
enforces continuity between the solution fields obtained from models optimized in two successive time
windows. Since the optimization variables can converge to two different solutions, the discontinuity of
the solution can be written, for example, in terms of the displacement field as

limx p t limx p t
t t
t t
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t t
t t
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Optimal control strategies can be implemented to solve the inverse test-analysis correlation problem
while reconstructing continuous solution fields and identifying the source of modeling error, as explained
in References [DIP 98] and [MOO 89]. They rely on the resolution of multiple two-point boundary value
problems (BVP). When satisfactory solutions to the two-point BVP’s are obtained, it is guaranteed that
the numerical model matches the measured data at the beginning and at the end of the time window
considered for the optimization. The optimal error control is a very attractive technique since not only
does it handle parametric and non-parametric identifications simultaneously but it also propagates
uncertainty and variability using the Bayesian theory of information and it provides a rigorous framework
for generating continuous solutions from an arbitrary number of optimizations.
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However, this improvement comes with the additional cost of formulating a two-point BVP to
guaranty continuity of the solution. Since the procedure is embedded within an optimization solver,
multiple two-point BVP’s must be solved for. Unfortunately, the impact on the computational
requirement is enormous. For example, our resolution of the single degree of freedom, Duffing oscillator
problem shown in Reference [DIP 98] requires a total of 16 to 20 hours of CPU time depending on the
number of measurement points available. This timing is obtained on a dedicated R10,000/250 MHz
processor when the algorithm is programmed within the environment provided by Matlab  [MAT 99].
Clearly, it prohibits any application of the technique to practical engineering problems. This is why
other avenues are explored in the remainder. We start by presenting the impact testbed used for our model
validation program (Section 3). Then, the approach of replacing a single inverse problem with multiple
forward, probabilistic problems is discussed (Section 4) and illustrated using real data (Section 5).

3. Impact Test Experiment

The application targeted is a high-frequency shock test that features a component characterized by a
nonlinear, visco-elastic material behavior. Our intent is to validate an existing elastomeric material
model. Since the original testing procedure that provided this model was quasi-static, it is our belief that
the data available does not represent the actual behavior with good fidelity at high strain rates. Hence,
combining the impact test (that provides sufficient resolution in the high strain region) to a numerical
procedure for correlating time-domain measurements by optimizing the material’s representation provides
a novel material testing procedure.

3.1. Numerical Modeling

An illustration of the setup is provided in Figure 5. In an effort to match the test data, several FE
models are developed by varying, among other things, the constitutive law and the type of modeling.
Therefore, optimization variables consist of the usual design variables augmented with structural form
parameters such as kinematic assumptions, geometry description (2D or 3D), contact modeling and
numerical viscosity. Figure 5 also illustrates one of the discretized models used for numerical simulation.
The analysis program used for the calculations is HKS/Abaqus-Explicit, a general-purpose package for
finite element modeling of nonlinear structural dynamics [ABA 98]. It features an explicit time
integration algorithm, which is convenient when dealing with nonlinear material behavior, potential
sources of impact or contact, and high frequency excitations.

Figure 5. Assembly of the cylindrical impactor and carriage (left) and 3D model of the system (right).
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Impactor
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It can be observed from Figure 5 that the main two components (steel impactor and foam layer) are
assembled and attached to the carriage. The center of the steel cylinder is hollow and is fixed with a rigid
collar to restrict the motion of the impactor to the vertical direction. This assures perfectly bilinear
contact between the steel and foam components, allowing the structure to be modeled axi-symmetrically.
In spite of this, a full three-dimensional model is also developed to verify this assumption. Another
important parameter is the preload applied by the bolt used to hold this assembly together. The torque
applied was not measured during testing and it may have varied from test to test.

3.2.  Experiment Setup

During the actual test, the carriage that weights 955 lbm (433 kg) is dropped from various heights and
impacts a rigid floor. The input acceleration is measured on the top surface of the carriage and three
output accelerations are measured on top of the steel impactor that weights 24 lbm (11 kg). Figure 6
provides an illustration of the test setup and instrumentation. This impact test is repeated several times to
collect multiple data sets from which the repeatability of the experiment can be assessed. Upon impact,
the steel cylinder compresses the foam to cause elastic and plastic strains during a few µ-seconds.

Figure 6. LANL impact test setup.

Typical accelerations measured during the impact tests are depicted in Figure 7. Both data sets are
generated by dropping the carriage from an initial height of 13 inches (0.33 meters). On the left of Figure
7, the acceleration response of a 1/4 inch-thick (6.3 mm) layer of foam is shown. On the right, the
acceleration response of a 1/2 inch-thick layer (12.6 mm) is shown. The results available are summarized
in Table 1 that gives the number of data sets collected for each configuration tested. The reason why less
data sets are available at high impact velocity is because these tests proved to be destructive to the
elastomeric material and could, therefore, not be repeated to study the variability.
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Figure 7. Accelerations measured during the impact test. Low-velocity impact of a thin layer of
material (left) and low-velocity impact of a thick layer of material (right).

It can be seen that over a thousand g’s are measured on top of the impact cylinder which yields large
deformations in the foam layer. The time scale also indicates that the associated strain rates are important.
Lastly, the variation in peak acceleration observed on Figure 7 suggests that a non-zero angle of impact
is involved, making it necessary to model this system with a 3D discretization. Clearly, modal
superposition techniques would fail modeling this system because of the following reasons: 1) contact
can not be represented efficiently from linear mode shapes; 2) nonlinear hyper-foam models, that possibly
include visco-elasticity, are needed to represent the foam’s hardening behavior; 3) very refined meshes
would be required to capture the frequency content well over 10,000 Hz.

Table 1. Data collected with the impact testbed.

Number of Data Sets
Collected

Low Velocity
Impact (13 in./0.3 m Drop)

High Velocity
Impact (155 in./4.0 m Drop)

Thin Layer
(0.25 in./6.3 mm) 10 Tests 5 Tests
Thick Layer
(0.50 in/12.6 mm) 10 Tests 5 Tests

4. Framework for the Validation of Nonlinear Structural Dynamics Models

In this Section, the overall procedure for test-analysis correlation (TAC) is described with emphasis
on explaining how the problem of probabilistic model validation is formulated. For this reason, technical
details are eluded as much as possible from the discussion. These can be found in the References cited
throughout this work.

4.1.  Response Surfaces for TAC & Optimization

As mentioned previously, formulating correctly inverse problems based on time-domain data requires
the resolution of multiple two-point boundary value problems (or “inner” optimization) within the
parameter adjustment loop (or “outer” optimization) [DIP 98]. Unfortunately, this formulation yields
prohibitive computational requirements for the type of systems we are interested in.
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The alternative pursued here is to, first, generate a response surface from a large number of explicit
FE solutions. A typical sampling technique used is the Latin hypercube method. If additional resolution
is required, curve-fitting or neural networks can be implemented for interpolating between data points.
Once the FE solutions are available for multiple designs, a metric is adopted to correlate the time-domain
data. In this work, essentially three metrics are defined: 1) comparing peak acceleration values; 2)
comparing time-histories of acceleration data; 3) the PCD method mentioned in Section 2. The cost
functions (also referred to as “g-function” in the next Section) associated with these three metrics are
described by equations [3], [4] and [5], respectively:
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where {Χ} denotes the subset of design parameters and/or random variables selected for parametric
adjustment. Symbols used in equation [5] represent normalized differences between the singular values
and singular vectors of the analysis and test data matrices. The definition of other metrics or “features” for
nonlinear dynamics is an important aspect of this research effort on which we are increasingly focusing.

4.2.  Fast Probability Integration

Our ability to perform probabilistic structural analysis relies essentially on the software NESSUS
(which stands for Numerical Evaluation of Stochastic Structures Under Stress), see Reference [NES 96],
and its fast probability integration (FPI) capability is described here.

In the following, it is assumed that Ν random variables collected in vector {Χ} must be defined in the
model. These may include uncertain input forces, random parameters for material modeling,
manufacturing tolerances, etc. We also define a response function Ζ and the objective of the FE
calculation is to estimate the value of Ζ for a given sample {Χ} of our random variables. Finally, a limit
state function g(Χ) is defined that describes the correlation with test data. For reliability analysis, the g-
function represents a limit on the acceptable behavior of the system. It is used for separating the safe
domain (when g(Χ)≥0) from failure (when g(Χ)<0). Here however, the g-function represents the metric
used for test-analysis correlation. A simple illustration is provided in the following where the response Ζ
is defined as the peak acceleration at a location coincident with a sensor and the g-function includes the
peak acceleration value measured at that location during the test. In this particular case, the figure-of-
merit defined for validating candidate models is simply given by equation [3]. “Success” is defined if
g(Χ)=0, that is, if the peak acceleration measured during the test is matched by the model in a
probabilistic sense. This essentially means that the problem of model validation consists of calculating
either the probability density function (PDF) or the cumulative density function (CDF) of the Ζ-
response, respectively defined as

p a Prob Z aZ ( ) = =[ ] ,     F ( ) Prob Z p z dzZ zα α
α

= ≤[ ] = ( )
−∞∫                   [6]

Hence, FPI is used to propagate efficiently variability information through a structural analysis.
Typically, estimating the entire PDF with a FE model that depends on Ν  random variables requires no
more than (Ν+1) analyses using FPI. The central aspect of FPI is the search for the most probable point
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(MPP) that defines the most probable prediction of the model in the presence of modeling uncertainty. To
find the MPP, the algorithm maximizes the joint PDF in variables {Χ} subject to the constraint g(Χ)=0.

A critical computational issue is the transformation of random variables {Χ} into standardized normal
variables {u}, that is, variables described by the unit normal CDF

Φ(u)
1

2
e ds

s

2
u

2

=
−

−∞∫ π
                                                 [7]

This is achieved via the Rosenblatt Theorem (see Reference [ROS 52]) that states that multivariate
random variables can be converted to uniform distributions, then, to unit Gaussian distributions

u (F (X))1
Z= −Φ ,    X F ( (u))Z

1= − Φ                                        [8]

This additional step facilitates greatly the search for the MPP and all subsequent calculations. Another
final aspect of the computational procedure is that, during the optimization, the constraint g(u)=0 may be
approximated using linear or quadratic polynomials to decrease the computational burden. Once the MPP
has been determined, the response surface can be explored to reconstruct the entire PDF or CDF.

4.3.  Software Integration

Software integration is an important part of our probabilistic model validation procedure. A short
overview of the procedure demonstrated in Section 5 using the impact testbed is now given. First, the
optimization parameters and random variables are defined. Multiple FE solutions and multi-dimensional
response surfaces are generated from statistical sampling. The first useful result is the sensitivity analysis
used to reduce the subset of potential optimization variables down to the most sensitive ones. Then, the
best possible model is sought through the optimization of its design parameters. The ability of a
probabilistic model to reproduce test data is assessed using the Ζ-response’s CDF. Of course, when
multiple data sets are available, CDF’s of the family of models must be compared to the CDF established
from test data and not to individual measurements anymore.

Three software packages involving four different programming languages are interfaced. The test-
analysis correlation procedure is controlled by a library of Matlab  functions [MAT 99]. The reason for
this choice is flexibility and the possibility to develop a user graphical interface easily. Depending on the
type of analysis requested by the user, the Matlab -based software writes and compiles Fortran77
routines that are used for generating the Abaqus input deck. Drivers written in the script language Python
[LUT 96] are also generated and used for piloting the FE analyses. Finally, results are uploaded back into
Matlab  for test-analysis correlation and parametric optimization. This architecture should enable the
interfacing in a near future of a variety of engineering analysis software, including parallel FE processing
packages such as Lawrence Livermore National Laboratory’s ParaDyn for running large-dimensional,
nonlinear problems on high-performance computing platforms.

5. Demonstration of Model Validation Using the LANL Impact Testbed

An illustration of several concepts discussed previously is now provided with the data sets collected
during the impact test experiment presented in Section 3. First, a short description of the test data
variability is given (Section 5.1). Then, the predictive quality of several numerical models is assessed
using fast probability integration (Section 5.2). The problem of measuring the consistency of two
populations formed of multiple data points is briefly addressed (Section 5.3). Model validation is
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performed in Section 5.4 by reconstructing response surfaces using two different test-analysis correlation
metrics and optimizing the design variables to get the best possible match between predictions and test
data. Finally, the concept of model verification for nonlinear dynamics is illustrated (Section 5.5).

5.1.  Variability of the Experiment

Figure 8 shows the variability observed during the impact test when the same configuration (same
sample of elastomeric material and impact velocity) is tested ten times. On the left, the top half
represents the ten input acceleration signals measured and the bottom half shows the ten output
acceleration signals measured at one of the three sensor locations. Although the environment of this
experiment was very well controlled, a small spread in both input and output signals is obtained. This
justifies our point that model correlation and model validation must be formulated as statistical pattern
recognition problems.

Figure 8. Accelerations measured during 10 “similar” tests (left) and corresponding PDF’s (right).

From these multiple measurement sets, variability of the test data can be assessed and represented in a
number of ways, an illustration of which is provided on the right of Figure 8. It shows the peak
acceleration PDF’s for each measurement. Such representation tells us, for example, that 17% of the peak
accelerations measured at output sensor 1 are equal to 1,520 g’s when “similar” experiments are repeated.
According to Figure 8, this is the most probable peak acceleration. What is therefore important is not
necessarily that the correlated models reproduce the peak acceleration measured during a single test but
that they predict the different acceleration levels with the same probability of occurrence as the one
inferred from test data.

5.2.  Analysis of the Probabilistic Models

The next step is to obtain the statistical characterization of numerical models. This is achieved via
fast probability integration, as seen previously. The models are then individually validated by comparing
their PDF’s or CDF’s to those obtained from test data. For this application, several 2D and 3D models
are developed. Among the parameters varied are the type of elements used in the discretization, the mesh
size, the type of contact conditions implemented, the material modeling, the preload applied when the
center bolt is tightened, the velocity at time of impact and the input acceleration. The two types of
information obtained by FPI are illustrated in Figure 9. After defining each one of the random variables, a
relatively small number of FE solutions are needed to estimate, in this case, the probability distribution
of the peak acceleration at output sensor 1. From Figure 9 (left), it can be seen, for example, that the
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probability that the peak acceleration be less than 1,520 g’s is equal to 90%. These PDF or CDF vectors
can also be differentiated with respect to each one of the random variables. It provides valuable
information regarding the influence of a probability distribution on a cost function or Ζ-function for test-
analysis correlation. Figure 9 illustrates this concept: the CDF shown on the left is differentiated with
respect to the mean of the velocity at time of impact (right, top half) and the standard deviation (right,
bottom half) when it is assumed that the velocity is normally distributed. Peak acceleration values (on
the horizontal axis) more sensitive to the impact velocity than others can then be identified.

Figure 9. CDF of the peak acceleration (left) and its sensitivity to the impact velocity (right).

The sensitivity information can be further condensed into single indicators that compare the influence
of each random variable on the Ζ-function. Figure 10 summarizes a study where the influence of five
variables (impact velocity, foam thickness, foam density and parameters of the stress-strain, hyperfoam
model) is investigated. This information is used for selecting the most sensitive parameters in a manner
similar to an analysis performed with a deterministic model. However, due to the nature of random
variables, we emphasize that derivatives can not be estimated with respect to the variables themselves.
Instead, their statistics must be used as illustrated in Figure 9.

Figure 10. Overall sensitivity of the CDF with respect to several random, design parameters.
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Table 2 shows some of the sensitivity and optimization results obtained when the cost function [3] is
implemented. These results are further discussed in Section 5.4.

Table 2. Qualitative results of the probabilistic sensitivity studies.

Parameter Varied Sensitivity Observed Optimum Value/Range

Type of Elements Very Low CAX4R, C3D8R
Mesh Size Very Low 1/10th Dimensions
Contact Condition Very Low Free, No Weights
Impact Velocity Low 550 in./sec.
Steel Material Low 304-SS
Angles of Impact High 0.5 degrees
Bolt Preload High 120-160 psi
Bulk Viscosity High 0.5-0.8
Foam Material Very High 1.2 x Stiffer
Input Scaling Very High 1.2-1.6

5.3.  Statistical Consistency of Test Data and Multiple Simulations

One of the somewhat open research issues identified by this work is the problem of establishing a
correlation between multiple data sets. By this we mean “assessing the degree to which two populations
are consistent with each other.” Our literature review seems to indicate that tools for assessing the
distance between multivariate data sets are not readily available. This difficulty is illustrated in Figure 11.
It represents the peak acceleration values for channels 1 and 2 plotted against each other. The data of ten
independent, “identical” tests are shown together with simulation results generated by two different
models. For each model, a particular design is generated by varying the angles of impact and the bolt
preload. Then, each design is analyzed ten times using the ten different input acceleration signals
measured during the repeated experiments. The three ellipsoids shown in Figure 11 illustrate the 95%
confidence intervals for the test data and two models.

Figure 11. Comparison of test and analysis data in a two-feature space.
(The 2D space represents the peak accelerations measured or predicted at sensors 1 and 2.)
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Obviously, the predictive quality of one of the two models is better because most of its data points
(68 of 100) fall within the 95% confidence interval of the test data. The other model predicts only 34 of
100 points within the test’s 95% confidence interval. This example illustrates that plotting several
features against each other defines a more powerful analysis tool than a simple comparison of time-
histories. Unfortunately, higher-order graphics are difficult to interpret visually. Therefore, a quantitative
indicator of the model's fit to test data is required when more than two features are analyzed
simultaneously. Two such statistical, “goodness-of-fit” indicators are briefly presented in the remainder.

By inspection of Figure 11, it is apparent that the peak magnitudes of accelerations 1 and 2 are
uncorrelated because the 95% confidence interval is nearly circular. Thus, we suspect that one of the
greater sources of variability is the source that affects the channels differently. This conclusion, however,
is not confirmed by data generated from the two models. One of them clearly exhibits greater variability
as indicated by the large confidence interval. The other one shows that the peak accelerations obtained are
somewhat correlated even if the features are statistically consistent with test data. This can be assessed
using a standard, multivariate Hotelling’s T2 test. First, statistics such as the vector of mean and the
matrix of covariance can be evaluated from the distribution of features. Hotelling’s T2 test states that the
model’s mean vector is an estimate of the test data to the (100-α)% confidence level if

µ µ µ µ α(p) (p)
N N 1

N N 1
( )test

T

test

1

test
p s

s p

N ,N Np s p
{ } − { }( ) [ ] { } − { }( ) ≤

−( )
−( )

−
−Σ F                [9]

Applied to the data shown in Figure 11, this statistics sets the acceptance ratio to 1.0035 at the 95%
confidence level. The Mahalanobis distance in the left-hand side of equation [9] is equal to 4.0 for the first
model which clearly indicates that it fails the test. The Mahalanobis distance of the second model is equal
to 0.2. This establishes that the mean response predicted by our second model has converged. It can
alternatively be stated that we are 95% confident that the average peak accelerations predicted by this
model are consistent with test data given the sources of variability of the experiment and given the
sources of modeling uncertainty. However, this conclusion remains of limited practical use for model
validation as long as the variance of the population has not converged as well.

One of the only possibility for testing both mean and variance is to calculate Kullback-Leibler’s
relative entropy defined as the expected value of the ratio between the PDF’s of the two populations

I(Model || Test) E
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Z
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α
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                                              [10]

If the features used are normally distributed (or if enough data points are available to justify the
application of the central limit Theorem), the relative entropy can be approximated as
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This metric would typically be used for assessing the consistency between two populations of features
and for optimizing parameters of the model. Unfortunately, statistical tests for verifying a pass/fail
hypothesis based on the relative entropy [10-11] are not available in the general case. This limitation is
currently being addressed. Another important issue is the availability of multiple data sets. For many
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applications, the experiment can not be repeated and the amount of measurements available is insufficient
to establish meaningful statistics. The method of surrogate data offers an attractive solution, as
demonstrated recently in Reference [PAE 99] with an application to nonlinear dynamics. It can be used
for generating additional data sets after the original distributions have been converted to unit, Gaussian
distributions via the Rosenblatt transform. By using the tools briefly discussed in this Section and by
investigating multiple data features rather than simple comparisons of time-series, we believe that a
systematic procedure for the qualification of modeling uncertainty can be developed based on test-analysis
correlation whether a single test or repeated experiments are available.

5.4.  Parametric Optimization for Test-Analysis Correlation

If the correlation with test data is not found satisfactory, Ζ-response surfaces are used to generate fast-
running models. These, in turn, provide the core of the parametric optimization algorithm that fine-tunes
a subset of the model’s design variables to improve the correlation with test data. In this Section, a case
is discussed where the nonlinear foam model, the bolt preload and the angles of impact are optimized.

Time measurements from the three sensors are gathered in a data matrix and its principal component
decomposition is compared to numerical simulations. The three singular values obtained from test data
are equal to 8.79e+06, 0.85e+06 and 0.13e+06 which clearly indicates that the dynamics is dominated by
a single “mode.” Figure 12 represents the three left singular vectors (or pseudo-mode shapes) and right
singular vectors (or time series) obtained from test data. Although Figure 12 shows that the measured
acceleration responses are dominated by a single “mode,” the contribution from the second PCD vector is
far from insignificant. It means that the dynamics of the impact is somewhat more complicated than first
thought, probably due to the compression and stretching of the foam pad relative to the impactor. From
the left singular vectors, it can be deducted that the first mode corresponds to the rigid-body steel impactor
compressing the foam pad because the vector exhibits roughly the same amplitude at each of the three
sensors. The second vector indicates that the impactor/foam assembly features a small inclination
compared to the carriage. From this second pseudo-mode shape, the location of the axis of rotation can be
estimated. We have found that the angle provided by this calculation matches the angle obtained by
numerical optimization (in the [0.5;0.7] degree range). The last vector probably involves elastic
deformations of the steel impactor (first bending mode).

Figure 12. Sets of left and right singular vectors from the PCD of test data. The pseudo-mode shape
vectors shown on the left are normalized to unity. The time-series shown on the right are scaled by the

corresponding singular values.
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Figure 13 pictures a typical Ζ-response surface obtained with the 3D model: the two horizontal axes
represent the values spanned by two parameters (an angle of impact and a scaling coefficient for the
hyperfoam model) and the vertical axis represents the cost function [5] on a log scale. For clarity, the
surface is shown as only two of the seven optimization variables are varied. The complete set includes
two coefficients of the hyperfoam material model, two angles of impact that simulate a small free-play in
the alignment of the carriage and steel impactor, the bolt preload, the input acceleration scaling factor and
a numerical bulk viscosity parameter. A total of 1,845 FE models are analyzed to generate a fast-running
model after having determined the approximate location of the cost function’s minimum from
probabilistic analysis. Figure 13 also depicts the test-analysis correlation before and after parametric
optimization. A clear improvement of the model’s predictive quality is witnessed. This is an important
result because features used for defining the cost function (namely, the PCD) are different from the feature
used to assess the correlation (namely, the acceleration history).

Figure 13. Ζ-response surface (left) and correlation of the 3D model (right). (Test data are shown in
red, solid line. Predictions of the original model are shown in blue, dashed line. Predictions of the

optimized model are shown in blue, solid line.)

Figure 14. Verification of the predictions. Left: response of a thin pad. Right: response of a thick pad.
(Test data are shown in red, solid line. Predictions of the original model are shown in blue, dashed line.

Predictions of the optimized model are shown in blue, solid line.)
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5.5.  Verification of the Models

The last step consists in verifying that the optimized models are indeed correct. This is referred to as
model verification here. It is achieved by comparing predictions of various models to measured data sets
for configurations different from the one used during FPI and optimization. For example, the 3D models
are optimized using the thin pad/low impact velocity setup. Then, the 2D, axi-symmetric models are
verified with the thick pad/low impact velocity configuration. On the left-hand side of Figure 14,
predictions of the original and final 2D models are compared to test data measured during a low-velocity
impact using the 0.25 in. (6.3 mm) thick foam pad. On the right-hand side of Figure 14, the response of
a 0.50 in. (12.6 mm) thick foam pad is featured. Despite small oscillations attributed to numerical noise
generated by the contact algorithm, the models predict the acceleration levels measured during the test.
We believe that such independent checks constitute the only valid proof that the modeling is correct.

6. Conclusion

In this paper, a general framework is proposed for validating numerical models for nonlinear, transient
dynamics. To bypass difficulties identified when applying test-analysis correlation methods to nonlinear
vibration data, inverse problems are replaced with multiple forward, stochastic problems. After a metric
has been defined for comparing test and analysis data, response surfaces are generated that can be used for
1) assessing in a probabilistic sense the quality of a particular simulation with respect to “reference” or
test data and 2) optimizing the model’s design parameters to improve its predictive quality. One critical
issue to be investigated in future research is the definition of adequate metrics for correlating transient,
nonlinear data. Rather than attempting to define deterministic, scalar distances, future work will
emphasize dealing with “clusters” of test and analysis data that must be compared in a statistical sense.
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